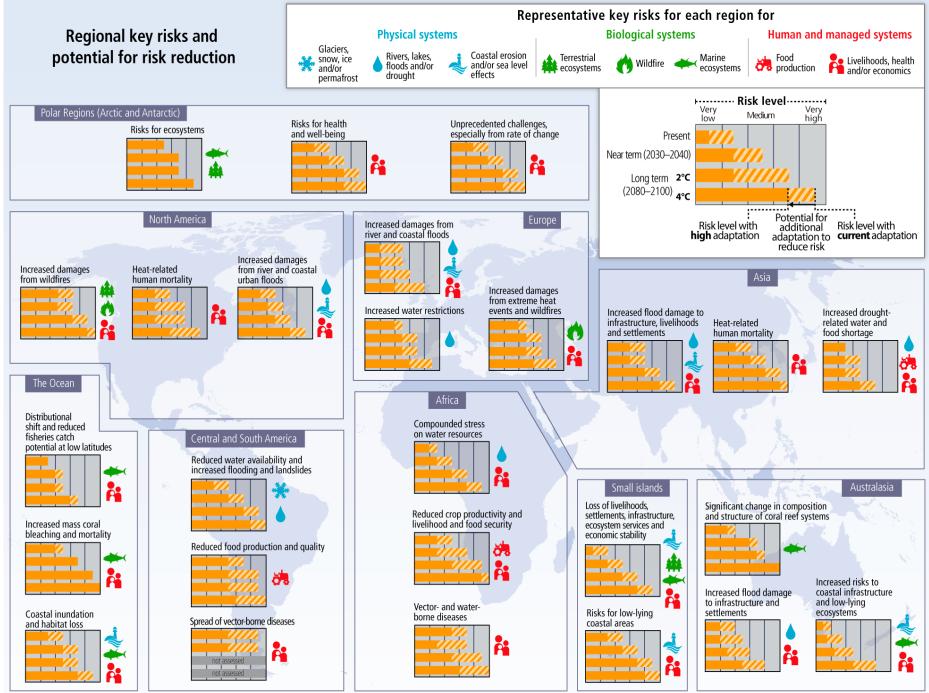
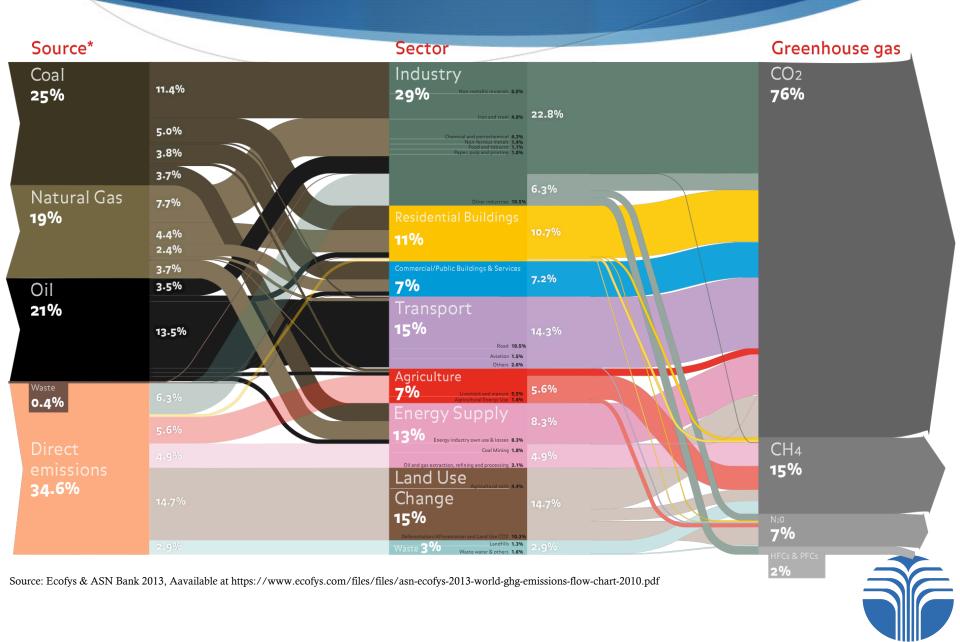
The Role of Extractive Industries in a Carbon Constrained World

June 2017


Columbia Center on Sustainable Investment

A JOINT CENTER OF COLUMBIA LAW SCHOOL AND THE EARTH INSTITUTE, COLUMBIA UNIVERSITY


- Climate change & the role of fossil fuels
- Government response
- Fossil fuel company response
- Meeting the Paris Agreement
- Implications for resource rich developing countries

Source: IPCC, 2014: Summary for Policymakers, In: Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Composition of GHG emissions

CO2 contained in coal, oil & gas varies

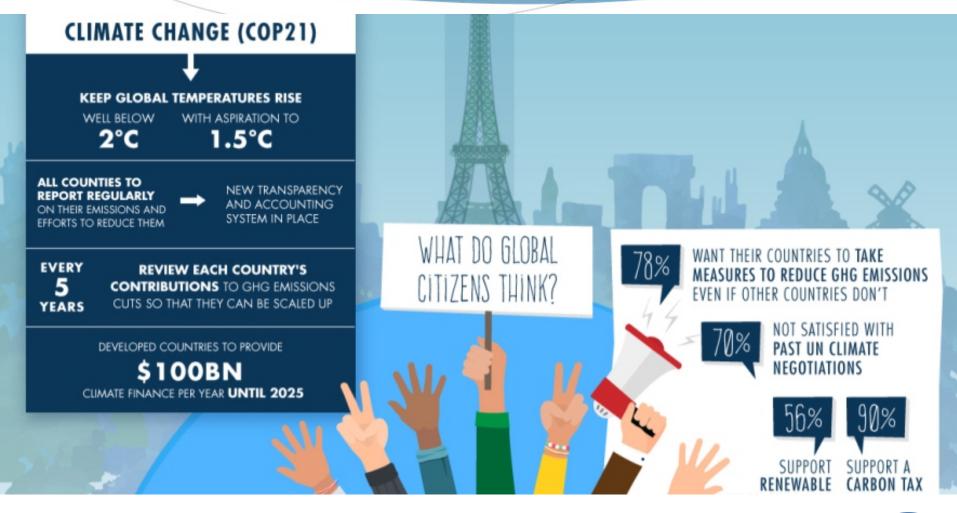
Upst	tream 📕 Mids	stream Dov		EENHOUSE GAS I G CO2 EQ./BARREL CRU				Average CO2 of electricity p countries, 200
0	100	200	300	400	500	600	700	Product
		_						Anthracite*
	nesia Duri							Coking coal*
Vene	zuela Hamaca	a SCO						Other bituminous co
Nige	ria Obagi							Sub-bituminous coa
Vene	zuela Tia Jua	na						Lignite
								Gas works gas*
	ria Bonny							Coke oven gas*
Vene	zuela Merey B	Blend						Blast furnace gas*
Iraq 2	Zubair							Other recovered gase
Nige	ria Escravos E	Reach						Oil shale*
	_	Jeaon						Peat*
Iran I	Marun							Natural gas
Niger	ria Penningto	n						Crude oil*
Irag	Rumaila							Refinery gas*
	Kirkuk							Liquefied petroleum
								Kerosene*
Ecua	dor Sacha							Gas/diesel oil*
Iraq \	West Qurna							Fuel oil
Unite	d Ara b Emira	tes Fateh						Source: IEA 2015, from fuel combustion Second edition
Qata	r Dukhan							

Source: Carnegie Endowment, available at http://oci.carnegieendowment.org/#supply-chain

emissions per kWh produced in OECD 09-2013

Product	gCO ₂ / kWh
Anthracite*	925
Coking coal*	825
Other bituminous coal	875
Sub-bituminous coal	945
Lignite	1035
Gas works gas*	335
Coke oven gas*	390
Blast furnace gas*	2390
Other recovered gases*	1570
Oil shale*	1160
Peat*	750
Natural gas	400
Crude oil*	645
Refinery gas*	415
Liquefied petroleum gases*	535
Kerosene*	655
Gas/diesel oil*	725
Fuel oil	675

, CO2 emissions tion: Highlights,

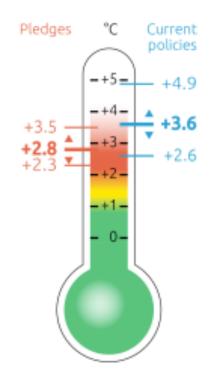

• Climate change & the role of fossil fuels

• Government response

- Fossil fuel company response
- Meeting the Paris Agreement
- Implications for resource rich developing countries

The Paris Agreement

Why 2 °C?



(Intended) Nationally Determined Contributions a step in the right direction

(I)NDC country assessments

Global-mean temperatures with and without pledges

Country

Inadequate:

Emissions targets in this area are less ambitious than the 2°C range defined by the studies and if all governments adopted an inadequate position, warming would likely exceed 3–4°C

Medium:

Pledges in this area are in the least stringent part of the 2°C range and if all governments adopted a medium position, warming would likely exceed 2°C

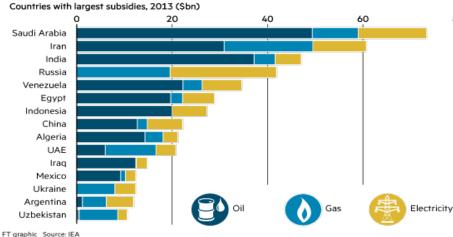
Role model:

Emissions targets in this area are more ambitious than the 2°C range

Sufficient:

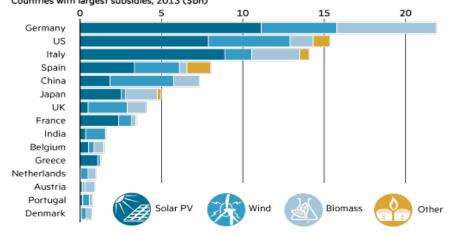
Pledges in this area are in the more stringent part of the 2°C range and if all governments are sufficient, warming would be limited below 2°C with a likely probability

Government policy responses

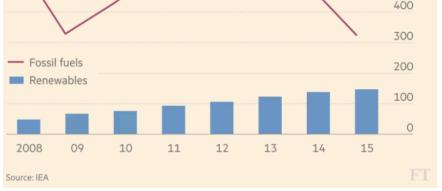

- Subsidies
- Carbon pricing
- Incentives for fuel switching
- Tighter emission controls
- Government co-investment in R&D
- Countries around the world have adopted more than 1,200 climate change laws, up from about 60 two decades ago

(Grantham Research Institute on Climate Change and the Environment and the Sabin Center on Climate Change Law at the Columbia Law School).

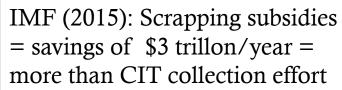
Fossil fuel and renewable energy subsidies


80

Renewable energy subsidies


Fossil-fuel subsidies

Countries with largest subsidies, 2013 (\$bn)


but the gaps is decreasing.

Global fossil fuel and renewable subsidies (\$bn)

Fossil fuel receive the greatest amount of subsidies

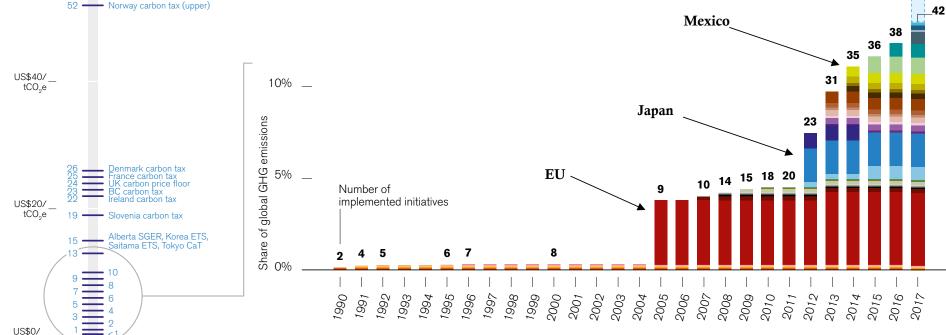
Source: Financial Times 2017, The Big Green Bang: how renewable energy became unstoppable, Accessible at https://www.ft.com/content/44ed7e90-3960-11e7-ac89-b01cc67cfeec

600

500

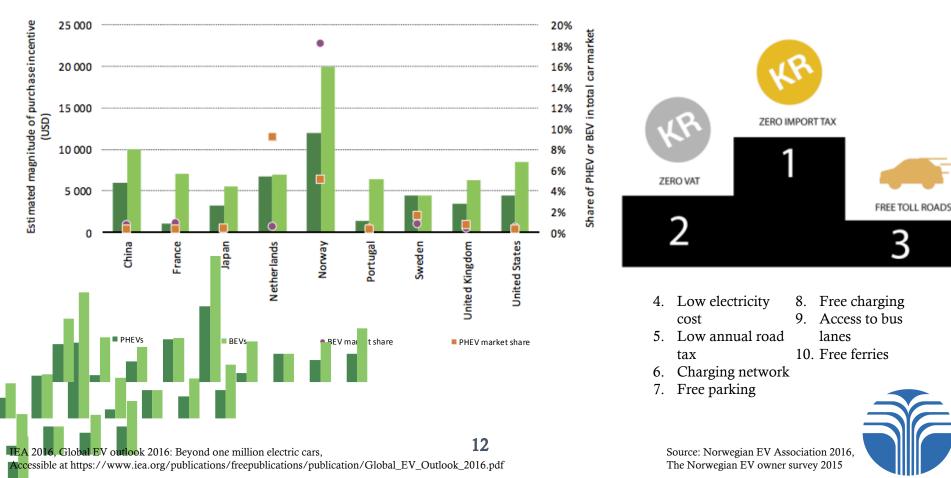
Source: Financial Times 2016, A world map of subsidies for renewable energy and fossil fuels Accessible at http://blogs.ft.com/the-world/files/2016/07/GR262Xcarbon_tax_modern_energy_SR_CHART.png

China

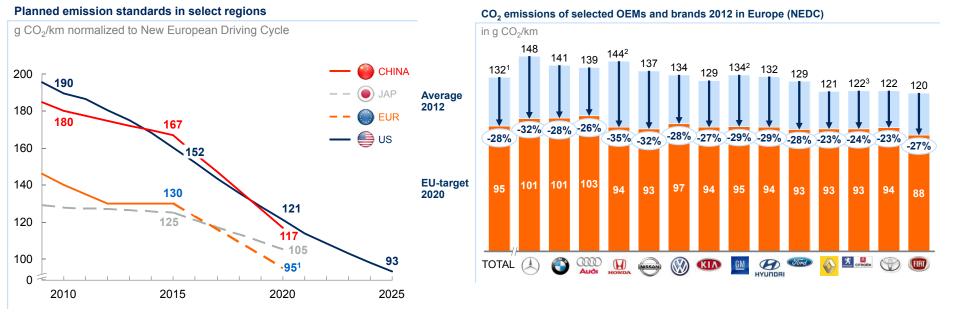


US\$140/ tCO₂e

> US\$80/_ tCO_oe


15% _____

tCO₂e Source: World Bank 2016, State and Trends of Carbon Pricing, Accessible at https://openknowledge.worldbank.org/bitstream/handle/10986/25160/9781464810015.pdf?sequence=7&isAllowed=y

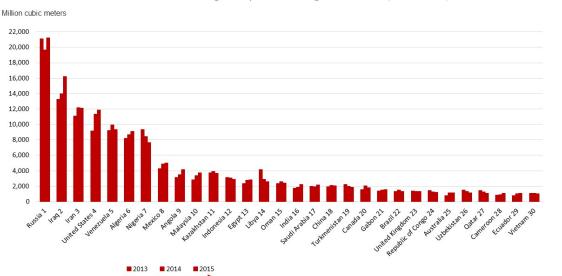

Incentives for fuel switching

Purchase incentives and market shares for Batter Electric Vehicles (BEVs) and and Plug-in Hybrid Electric Vehicles (PHEVs), 2015

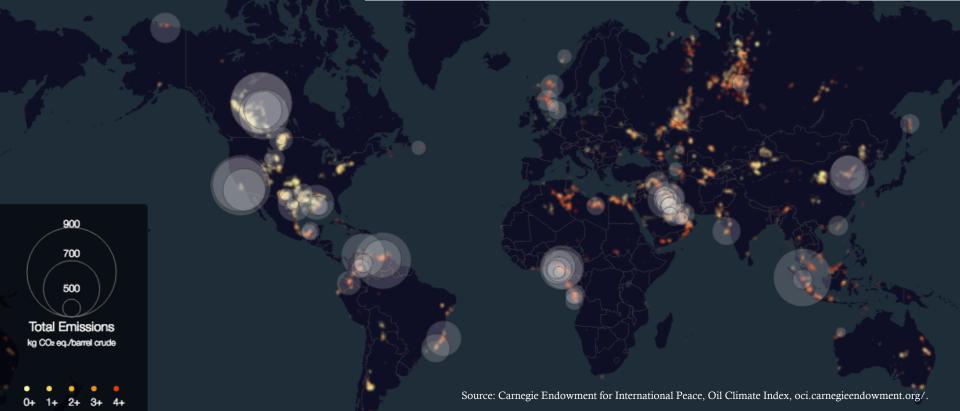
Norwegian Electric Vehicle owner Survey 2015: Rank the electric car incentives

Emission controls

Major OEMs need to cut fleet emissions by ~30% by 2020 to meet EU emissions target


13

Source: Amsterdam Roundtable Foundation and McKinsey & Company 2014, Evolution: Electric vehicles in Europe: Gearing up for a new phase?


The *new* ranking – top 30 flaring countries (2013-15)

Zero routine flaring

<u>Check CCSI's associated gas case</u> <u>studies and framework</u>

Source: NOAA/GGFR

- Climate change & the role of fossil fuels
- Government response
- Fossil fuel company response
- Meeting the Paris Agreement
- Implications for resource rich developing countries

Why FF companies should care?

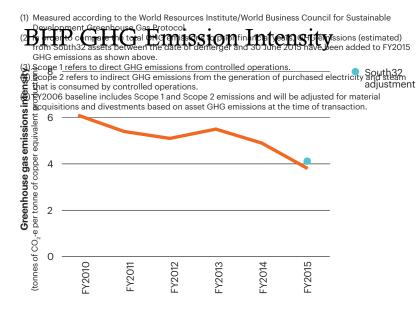
Climate-change risks will be felt differently by industry.

Moderate risk 📃 High risk

Expected impact by sector

Types of risk		Oil and gas	Chemicals	Agriculture	п	Utilities/ power	Transport/ logistics
Value- chain risks	Physical						
	Price						
	Product						
External- stakeholder risks	Ratings						
	Regulation						
	Reputation						

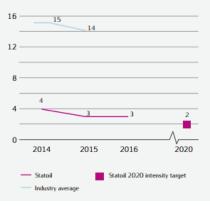
Moral & ethical reasons


- Attract top talent for future workforce
- Secure social license to operate
- Secure financing & investor support
- Play a prominent role in energy supply in the future

Source: McKinsey & Company 2015, How companies can adapt to climate change, Accessible at

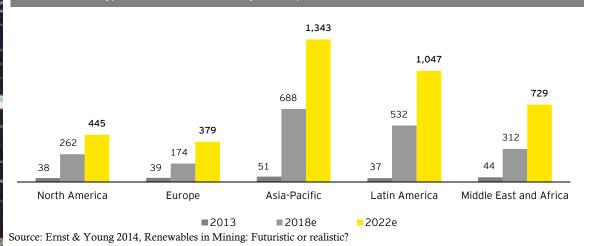

https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/how-companies-can-adapt-to-climate-change

Reduce carbon footprint of operations & eliminate flaring



Statoil CO2 intensity & flaring intensity

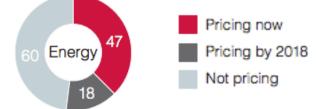
CO₂ intensity (upstream)



Flaring intensity upstream (tonnes of gas flared per thousand tonnes of hydrocarbon produced)

Power operations with renewables

Renewable energy investment in the mining industry (base case, US\$m), world markets: 2013-22


Pictured: Aerial view of the Weipa Solar Plant . Source: Rio Tinto

In Queensland, Weipa bauxite mine: Rio Tinto in a 15 year PPA with First Solar co. with help from ARENA, the Australian Renewable Energy Agency.

- Equipped the mine with a 18-000 solar panel PV farm to complement diesel base load in times of peak
- Capacity : 1.7 MW and potential to expand to 5 MW
- Saving: 600 000 liters of fuel annually 1,600 t/ year of GHG emissions
 = 700 cars
- Shared use: covers 20% of electricity demand of township on the Western Cape York Peninsula.
 18

Use of carbon price

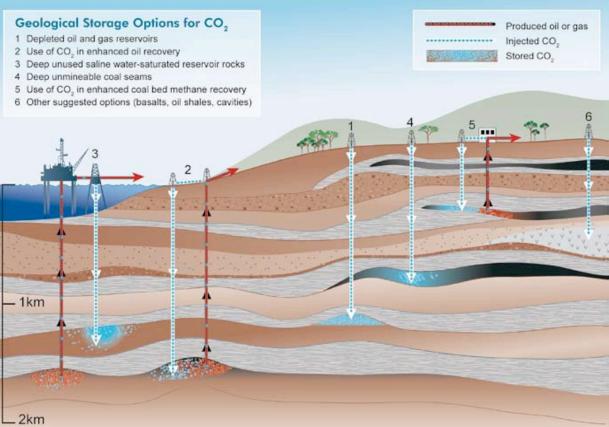
- 1. Provides an incentive to reallocate resources toward low-carbon activities;
- 2. Used to determine the business case for R&D investments
- 3. Assigning a financial value to both emitted and avoided carbon emissions helps reveal hidden risks and opportunities

Company	Country	Carbon Price
Exxaro Resources Ltd	South Africa	\$8.17
AngloGold Ashanti	South Africa	\$7.70
Essar Oil	India	\$15.00
Total	France	\$27.92
Eni SpA	Italy	\$40.00
Royal Dutch Shell	Netherlands	\$40.00
Statoil ASA	Norway	\$ 50-64
BP	UK	\$40.00
Anglo American	UK	\$ 3.27-8.17
BHP Billiton	UK	\$24.00
Exxon Mobil		
Corporation	USA	\$80.00
ConocoPhillips	USA	\$ 6–38
HudBay Minerals Inc.	Canada	\$ 15.32-38.29
Teck Resources Limited	Canada	\$ 11.49-30.64

Source: CDP 2016, Embedding a carbon price into business strategy

Make a low carbon business model a comparative advantage - Example: Statoil

A STRATEGY TO CREATE A LOW CARBON ADVANTAGE


Build a high value and lower carbon oil and gas portfolio	Create a material industrial position in new energy solutions	Accountability and collaboration
CO ₂ emission reductions	New energy solutions with	Continued support for
of 3 million tonnes per year by 2030*	potential to represent around 15-20% of capex by 2030	carbon pricing
		Minimum internal carbon
Portfolio carbon intensity	Up to 25% of research	price of USD 50 per tonne CO_2
of 8kg CO_2 /boe** by 2030	funds to new energy solutions	
	and energy efficiency by 2020	Climate risk and
Methane emissions from the		performance embedded
Norwegian gas value chain	Invest USD 200 million through	into strategy, incentives
below 0.3%	our new energy ventures fund	and decision-making
Eliminate routine flaring	Partner in the USD 1 billion	Amplifying our climate
by 2030	OGCI Climate Investments	actions through collaboration

*Compared to 2017 **Barrel of oil equivalent.

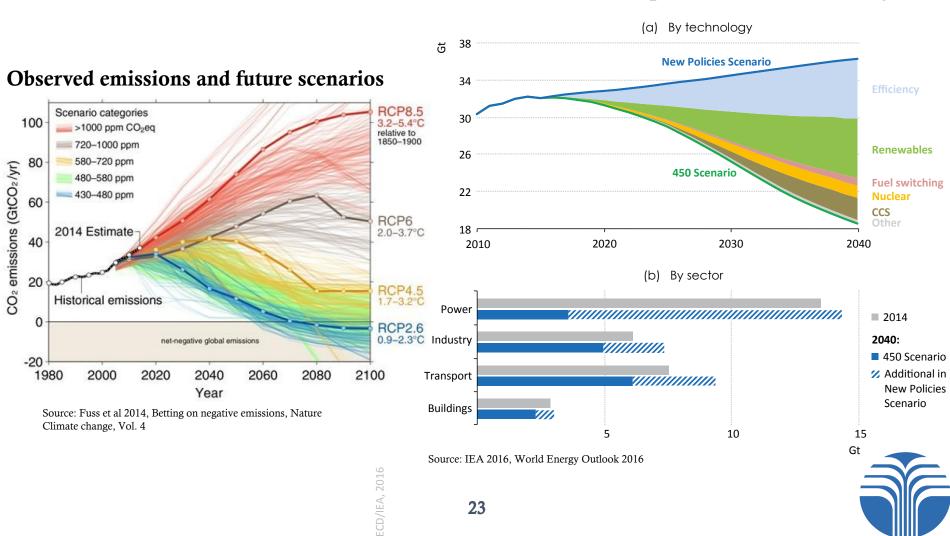
Invest in Carbon capture and sequestration (CCS)

- **To capture CO2:** precombustion capture, post-combustion capture, and oxy-fuel combustion capture (during fuel combustion).
- **To store CO2:** underground or stored in the ocean.

Source: Global CCS Institute, Module 1 (courtesy of CO2CRC)

If CCS is to provide 20% of the CO₂ reductions this would require:

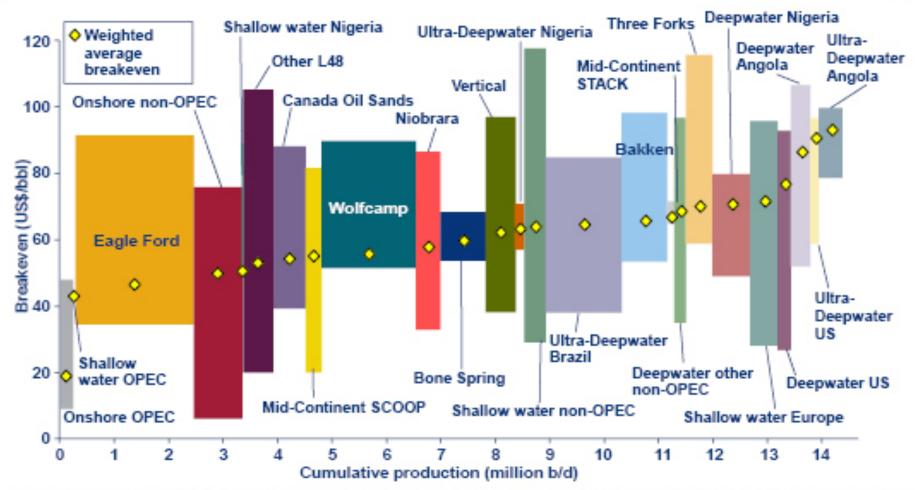
- To build 3,400 commercial-scale projects worldwide by 2050 (only a few small scale projects today)
- Global investment to grow to an average of US\$70 billion per year in the 2020s and US\$110 billion per year in the 2030s (only a few billions \$ today)



- Climate change & the role of fossil fuels
- Government response
- Fossil fuel company response
- Meeting the Paris Agreement
- Implications for resource rich developing countries

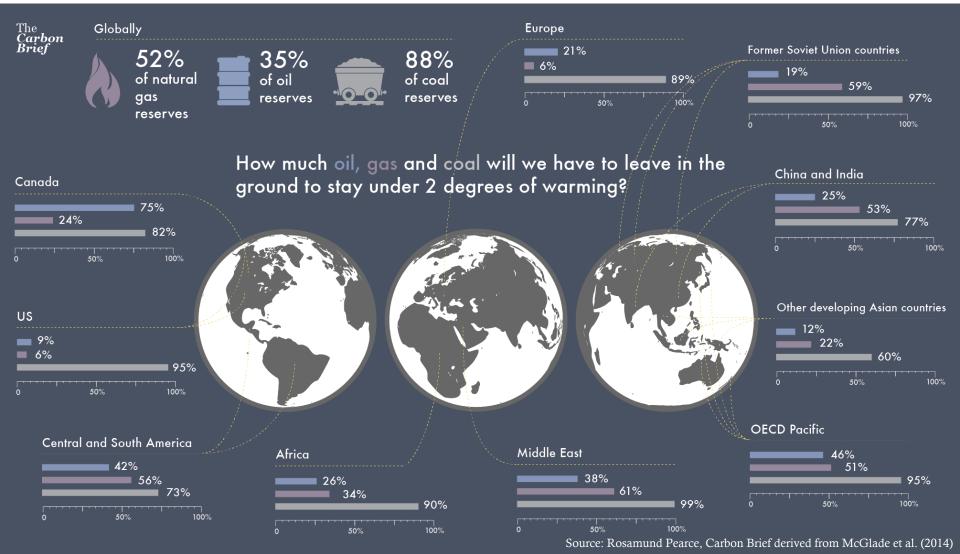
To meet agreed target in Paris, will need to cut emissions sharply

Emission reduction requirements to meet 2° target


... and would need to leave FF under the ground

How can this be achieved?

Stranding according to market forces


Pre-FID and US L48 future drilling cumulative production by breakeven in 2025 – by resource theme

Source: Wood Mackenzie, onshore breakevens at 10% discount rate, offshore at 15% discount rate, breakevens in US\$ Brent equivalent

This is what it would look like

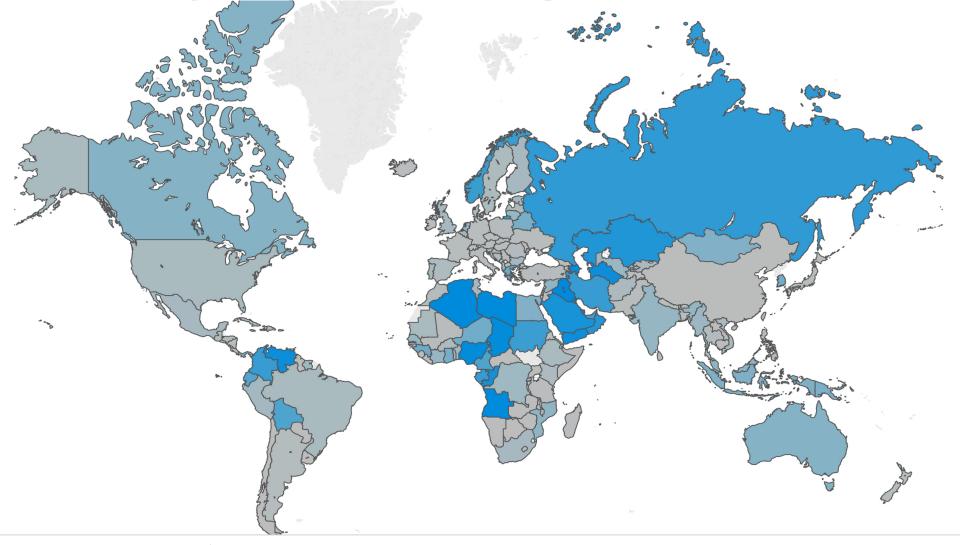
Unburnable reserves before 2050 for the 2 degree scenario (without CCS)

Should take equity dimension into account? If so, how?

- 1. Level of development?
- 2. Historical responsibility?
- 3. Availability of alternative energy sources?
- 4. Carbon intensity of the economy?
- 5. Climate vulnerability?
- 6. Governance structure?

Can gas be a transition fuel?

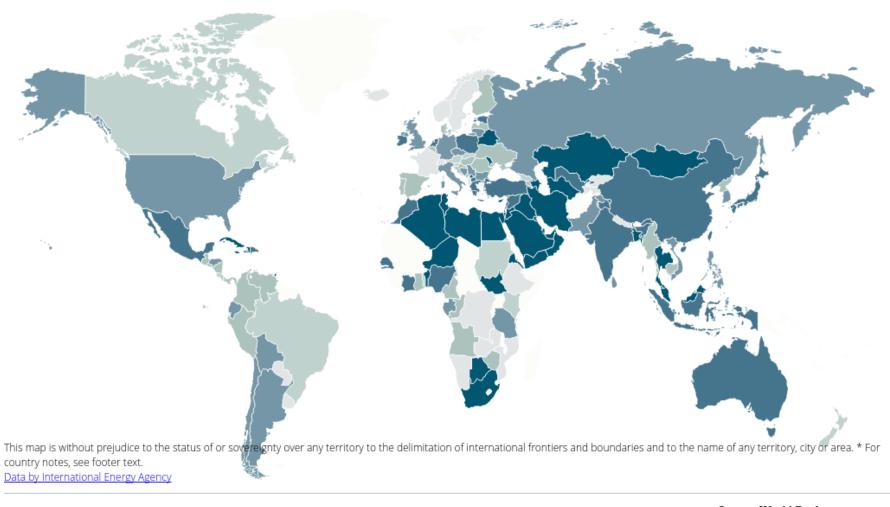
- Makes power generation less carbon intensive than coal
- Complementary energy source to renewables
- BUT: still produces **significant CO2 emissions**
- Long payback periods for infrastructure- > delay of investment in renewable energy projects
- Methane leaks -> more problematic than CO2 for CC in short term



- Climate change & the role of fossil fuels
- Government response
- Fossil fuel company response
- Meeting the Paris Agreement
- Implications for resource rich developing countries

Many developing countries dependent on fossil fuel exports...

Percentage of exports made up of fuel resources $in\ 2014$


...and rely on fossil fuels for power generation

Share of Fossil Fuels in Electricity Production (%) (2014)

50% - 75%

25% - 50%

75% - 90%

10% - 25%

Source: World Bank, World Development Indicators

No data

< 10%

Implications for resource rich developing countries?

- 1. The role of fossil fuels is going to decrease over the coming decades
- 2. Economic diversification becomes even more critical to reduce reliance on fossil fuels
- 3. Fossil fuel subsidies should be eliminated to reduce dependency
- 4. Public investments through State Owned Companies in fossil fuels is increasingly at risk
- 5. The new global energy system will rely on extractive industries. How can we avoid the mistakes made during the fossil fuel era?

What minerals needed in the new energy system?

	Wind	Solar photovoltaic	Concentrating solar power	Carbon capture and storage	Nuclear power	Light- emitting diodes	Electric vehicles	Energy storage	Electric motors
Aluminum	Х	Х	Х	Х		Х		Х	Х
Chromium	Х			Х	Х	Х			
Cobalt				Х	Х		Х	Х	
Copper	Х	Х		Х	Х	Х	Х		Х
Indium		Х			Х	Х	Х		
Iron (cast)	Х		х			Х		Х	
Iron (magnet)	Х								х
Lead	Х	Х			Х	Х			
Lithium							Х	Х	
Manganese	Х			х			Х	х	
Molybdenum	Х	х		Х	Х	Х			
Neodymium (proxy for rare earths)	х						х		
Nickel	Х	Х		х	Х	Х	Х	Х	
Silver		Х	х		х	Х	Х		
Steel (Engineering)	Х								
Zinc		х				х			

33

Source: World Bank 2017, The growing role of minerals and metals for a low carbon future

References

- CCSI' timeline on O&G's sector re Climate Change, Renewable energy and shareholders' engagement:
 - http://www.tiki-toki.com/timeline/entry/486412/Oil-and-Gas-Majors-Activities-with-Relation-to-Climate-Change/
- CCSI's blog series on Climate Change:
 - http://blogs.ei.columbia.edu/tag/ccsi-annual-conference/
- CCSI's work on Flaring:
 - http://ccsi.columbia.edu/work/projects/a-regulatory-operational-and-commercialframework-for-the-utilization-of-associated-gas/
- CCSI's work on role of FF companies:
 - http://ccsi.columbia.edu/work/projects/fossil-fuel-companies-and-climate-change/
- Deep Decarbonization Project:
 - http://deepdecarbonization.org

