# A Framework to Approach Shared Use of Mining Related Infrastructure: Water

Minimizing the mining sector's water footprint and increasing access to [potable] water supply for communities

November 2013



# Water is of critical importance to mines and to surrounding communities



Banner in Knysna, South Africa. Source: www.cactuslouise.com



Source: Ventyx





Indigenous 'water laws' protest in Ecuador, 2010; photo by Lou Gold

### What is meant by shared use?

### Minimize a mine's footprint



Robinson Lake, Randfontein, SA Source: www.environment.co.za



Source: waterpaths.wordpress.com

# Leverage mining-related investments in water infrastructure

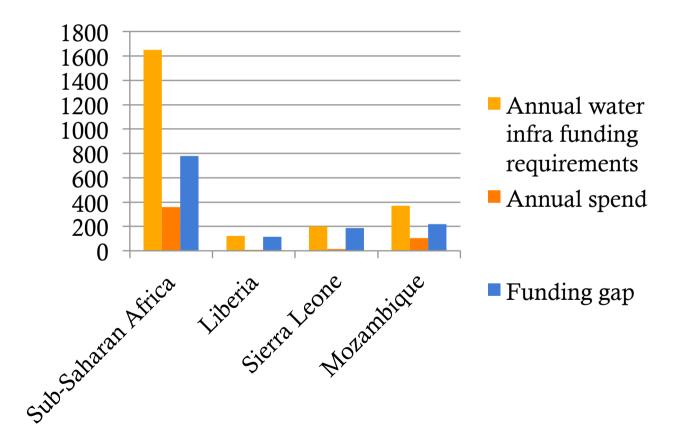


**Source: The Habitat Advocate** 



### Host country water infrastructure needs

#### African countries on target to meet water MDG by 2015




On Track: Coverage rate in 2010 was > 95% or was within 5% of the 2010 rate required to meet the target.

- Progress but insufficient: Coverage rate in 2010 between 5% and 10% of the 2010 rate required to meet the target.
- Not on Track: Coverage rate in 2010 was the same or lower than in 1990 or below 10% of the 2010 rate required to meet the target.
- Insufficient data or not applicable: Data was unavailable or insufficient to estimate trends or a progress assessment was not applicable.

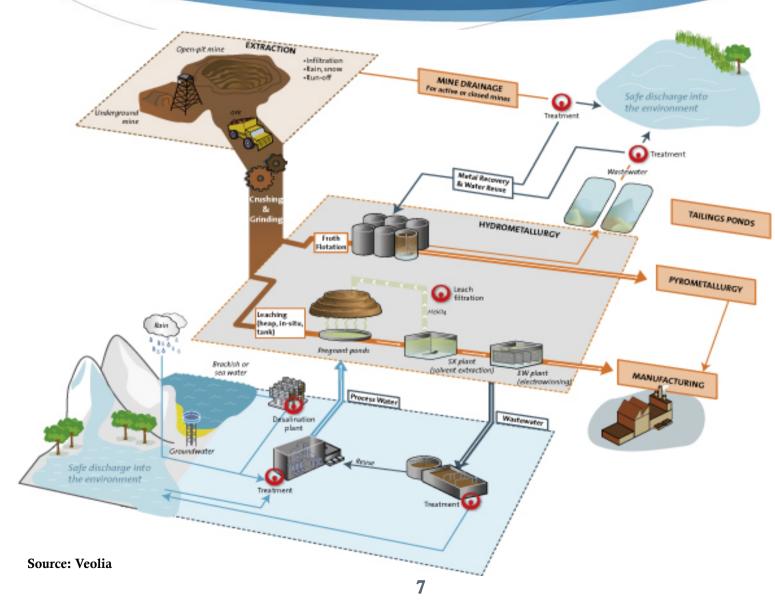
# Host country water infrastructure financing gap

AICD: Annual spending in US\$ millions between 2006 – 2015 to meet the water & sanitation MDGs





### Water intensity of mining


Figure 1. Water intensity of key minerals and metals

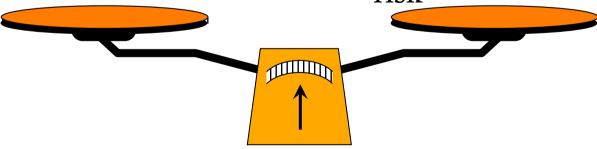
| Mineral/metal type | Water use      |
|--------------------|----------------|
| Coal Coal          | <b>6</b>       |
| Copper             |                |
| Diamond            | <b>&amp;</b>   |
| Gold               | <b>. . . .</b> |
| Nickel             | <b>6</b>       |
| Iron ore           | <b>.</b>       |
| Platinum           | <b>6</b>       |

Source: Frost & Sullivan 2011



# Mines need water infrastructure to source and treat water




#### Economic premise for shared use

#### Benefit for country:

- Minimize the mining sector's water footprint
- Increase access to improved potable water
- Develop the water infrastructure

### Potential benefit for mine:

- Increased water supply
- Reduced costs
- Maintain social license to operate
- Minimize reputational risk





### Scope of Framework

Purpose: To facilitate shared-use

STEP 1: Assess the Current Situation – What is at Stake?

**STEP 2: Identify Operational Synergies** 

STEP 3: Verify the necessary pre-conditions

**STEP 4: Negotiation Points** 



# STEP 1: What determines a mine's water arrangements?

Fresh water availability

Adequacy of public water infrastructure

Cost of water supply

Cost of recycling water/sourcing from alternative locations

- How much fresh water has been allocated, or is available to a mining operation?
- Can mine obtain some or all of its water requirements from an existing Authority? Reliability?
  - At what cost?

 How much water can the mine obtain from recycling/ re-using water, or obtaining it from other sources?

### STEP 2: Identify Operational Synergies

### Some Shared Infrastructure

- Mines supply water to communities:
  - Excess mine water
  - Desalinated water
  - Treated community waste water

### Shared Infrastructure

• Mines as an anchor for investment in water infrastructure

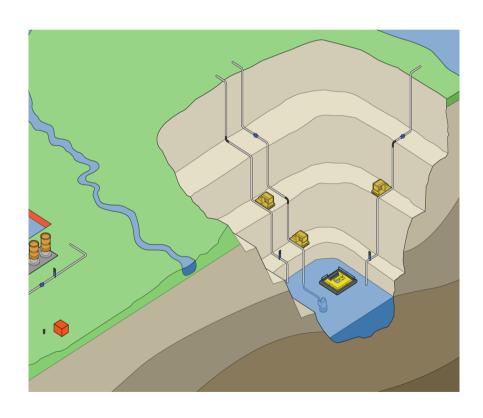
No Shared Infrastructure

 Mines collaborate with stakeholders to provide water infrastructure to nearby communities



### Scenario (a) Mines supply excess water to communities

Excess water is supplied from:


Dewatering

Desalination

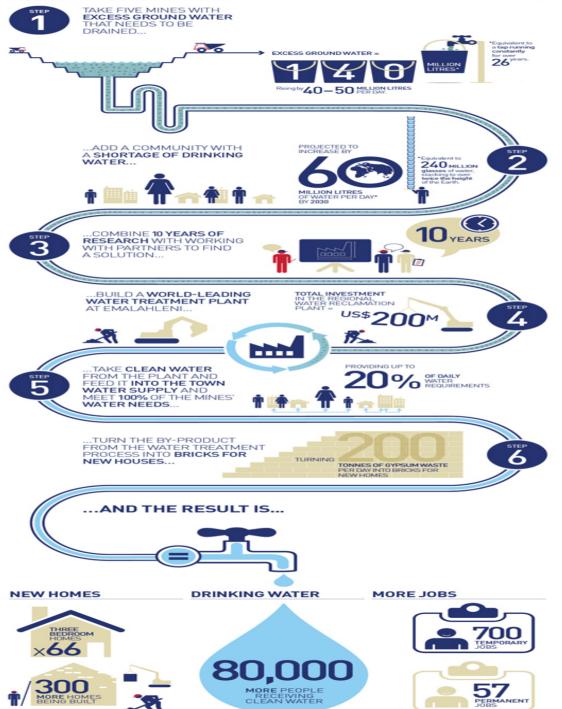
Waste water



# Scenario (a) i. Mine provides treated water obtained from dewatering

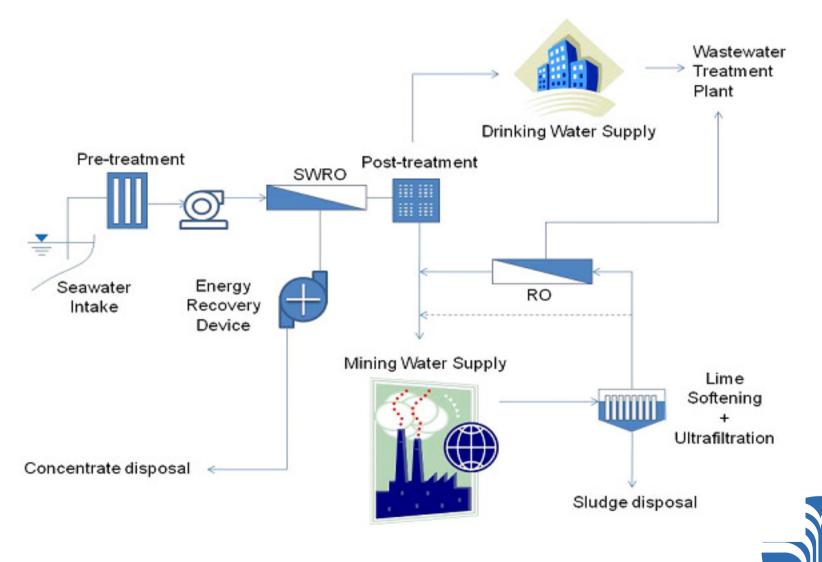





Source: Weir Minerals at www.dewateringexpertise.com

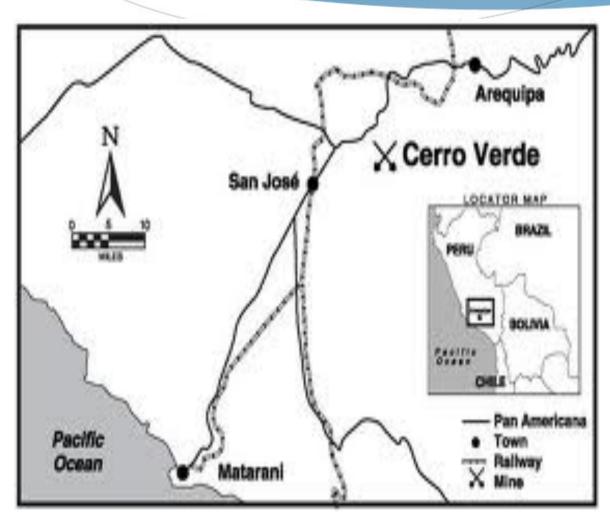
Source: Aquatech Dewatering and Pumping Solutions




E-Mahlahleni Water Reclamation Plant, South Africa

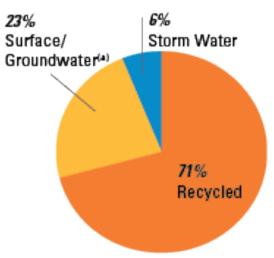
Source: Anglo American's 6-step guide to turning mine water into homes, drinking water and jobs.






### Scenario (a) ii. Mine provides excess desalinated water




Source: Doosan Hydro Technology

### Scenario (a) iii. Mine provides treated waste water



#### 2012 WATER USE BY SOURCE

665 Million Cubic Meters



Includes 7.7 million cubic meters municipal water, municipal wastewater and water imported from any other industrial or mining facility



#### Scenario (a): STEPS 3 & 4

#### **Pre-conditions**

- Legal and regulatory framework
  - Strict environmental regulations
  - Water licensing regime
- Institutional setting to enforce and monitor water rights
- Institutional presence and capacity to supply/ treat water
- Mechanisms to ensure water infrastructure is sustainable

#### **Negotiating Points**

- Amount of excess water
- Water Charge
- Duration
- Who owns and operates the water infrastructure?
  - In E-Malahleni Rio Tinto
  - Peru local water authority



### Scenario (b) Mine as an anchor for investment in water infrastructure

From a local authority's perspective

- Institutional capacity
- Water tariff
- · Consumer demand

From a mining company's perspective

- Reduced Costs
- Legal Requirement
- Social License
- But: (1) reliability, (2) water tariff, (3) timing of water supply



### Scenario (b): STEPS 3 & 4

#### **Pre-conditions**

- Legal and regulatory framework
  - Strict environmental regulations
  - Water licensing regime
- Institutional setting to enforce and monitor water rights
- Institutional presence and capacity to supply water
- Water tariff needs to be set to maximize cost recovery
- Mechanisms to ensure water infrastructure is sustainable

#### **Negotiating Points**

- How to ensure reliability of water supply to the mine?
  - Step-In rights?
- Alignment of timing with mine operation:
  - Provision for delays
  - Scheduled and unscheduled maintenance
- Water supply terms
  - Water amount
  - Water tariff
- Post-closure obligations

### Scenario (c): Mines provide water infrastructure to nearby communities

Where a mine sources its own water, it could also supply water to communities

- i. Piped water supply and treatment infrastructure
- Mine rehabilitates, expands, or replicates self-supply options to surrounding communities
- ii. Small-scale supply and treatment technologies
- Mine provides small-scale supply and treatment solutions to surrounding communities



## Scenario (c): Mines provide water infrastructure to nearby communities

 Scenario (a)(i): Mine provides piped water supply, treatment and/ or storage infrastructure





Source: Rio Tinto

 Scenario (a)(ii): Mine provides smallscale supply and treatment solutions to surrounding communities



Source: www.africanvision.org.uk



21

### Scenario (c) Negotiating Points

- Required by terms of concession agreement, or part of a mining company's CSR program?
- What is the geographical scope for the infrastructure?
- Which parties should be involved (government, utility, donors, NGOs)?
- What are the responsibilities of each party? Who provides the services?
- Water quality/ water availability/ O&M



#### www.vcc.columbia.edu

